NERVOUS SYSTEMS

NEURON
SIMPLE REFLEX
Resting Potential

![Diagram of resting potential with ions K⁺, Na⁺, and Cl⁻]

Action Potential

![Diagram of action potential showing electrical impulses and ion movements]

Animal Form & Function Activity #7 page 3
TRANSMISSION ACROSS A SYNAPSE
QUESTIONS:

1. Match the structure with the correct letter from the diagram below.
 ______ Dendrites
 ______ Schwann cell nucleus
 ______ Axon
 ______ Node of Ranvier
 ______ Cell body
 ______ Myelin sheath
 ______ Nucleus
 ______ Axon terminals
 ______ Neurilemma
 ______ End bulbs

2. Identify each of the following as true of the sensory neuron (SN) or the motor neuron (MN)

 ______ anterior root ______ posterior root
 ______ has a ganglion ______ lacks a ganglion
 ______ carriers impulses from receptor to spinal cord
 ______ carriers impulses from spinal cord to effector
 ______ has a relatively long dendrite & short axon
 ______ has relatively short dendrites & a long axon
 ______ enters spinal cord
 ______ exits spinal cord
3. Match the following parts with the correct letter from the diagram.

______ Dorsal Root
______ Dorsal Root Ganglion
______ Effector
______ Interneuron
______ Receptor
______ Ventral Root

4. Match the following parts with the correct letter from the diagram.

______ Motor neuron axon
______ Sensory neuron axon
______ Sensory neuron cell body
______ Sensory neuron dendrite

5. Match the description with the correct event.

______ More Na+ outside cell
 More K+ inside cell
 A. Depolarization

______ Na+ ion gates open and Na+ rush into cell
 B. Hyperpolarization

______ K+ gates open & Na+ gates close; K+ rush out of cell
 C. Refractory Period

______ More K+ moved out of cell than necessary to reestablish charge across membrane
 D. Repolarization

______ Na+ pumped out of cell & K+ pumped into cell
 E. Resting potential
6. How is the resting potential different from repolarization?

__

__

7. Answer the following questions regarding the transmission of a nerve impulse.

a. What maintains the excess of Na+ outside the cell and an excess of K+ inside the cell during the resting potential stage?

__

b. The resting potential of a neuron (-70mV) indicates that the inside of the cell is more negative than the outside. What two factors cause this negative charge?

__

c. What causes Na+ channels (gates) to open?

__

d. What causes Na+ to rush into the neuron during depolarization?

__

e. What causes K+ to rush out of the neuron during repolarization?

__

f. What causes the neuron to be hyperpolarized?

__

g. What reestablishes the original distribution of K+ and Na+ during the refractory period?

__
8. Listed below is the distribution / movement of Na+ and K+ during the transmission of a nerve impulse. Put the following in the correct order.

 ___1__ More Na+ outside the neuron; more K+ inside the neuron

 ______ Na+ gates open

 ______ Na+ gates close & K+ gates open

 ______ Na+ rushes into the neuron

 ______ K+ rushes out of the neuron

 ______ More K+ is outside the neuron; more Na+ is inside the neuron

 ______ Na+ is pumped out of the cell & K+ is pumped into the cell

9. Match the structure with the correct letter from the diagram below.

 ______ Neurotransmitter

 ______ Postsynaptic membrane

 ______ Presynaptic membrane

 ______ Receptor site (protein)

 ______ Synaptic cleft

 ______ Synaptic end bulb

 ______ Synaptic vesicle

10. Nervous system organization tends to correlate with body symmetry. Explain this statement providing examples from the animal kingdom.

11. Define cephalization.

12. Why was cephalization important in the evolution of the animal kingdom?

13. Complete the following chart comparing the two major divisions of the vertebrate nervous system.

<table>
<thead>
<tr>
<th>Division</th>
<th>Central Nervous System</th>
<th>Peripheral Nervous System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components/Parts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14. What are the two divisions of the peripheral nervous system? Provide a general function for each.

<table>
<thead>
<tr>
<th>Division</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15. What are the two divisions of the autonomic nervous system?

16. Use Figure 48.16 page 979 to identify the autonomic nervous system division (Parasympathetic or Sympathetic) describe in each of the following.

_____ Long preganglionic fibers
_____ Short preganglionic fibers
_____ Long postganglionic fibers
_____ Short postganglionic fibers
_____ Ganglia near the CNS
_____ Ganglia near the effector
_____ Originate from the thoracic and lumbar regions of the spine
_____ Originate from the brain and sacrum
_____ Constricts the pupil
_____ Dilates the pupil
_____ Increases activity of the digestive system
_____ Decreases the activity of the digestive system
_____ Stimulates defecation and urination
_____ Constricts respiratory passageways
_____ Dilates respiratory passageways
_____ Reduces heart rate and the force of cardiac contractions
_____ Increases heart rate and the force of cardiac contractions
_____ Centers on relaxation, food processing, and energy absorption
_____ Prepares the body for emergencies; triggers the fight or flight response
17. Color the following parts on the diagram:

Central Nervous System
- Cerebral hemisphere (A)
- Epithalamus (B)
- Thalamus (C)
- Hypothalamus (D)
- Midbrain (E)
- Pons (F)
- Medulla (G)
- Cerebellum (H)
- Spinal cord (I)

Simple Spinal Reflex
- Receptor (L)
- Sensory neuron (M)
- Posterior root (M₁)
- Posterior root ganglion (M₂)
- Motor neuron (N)
- Anterior root (N₁)
- Effector (O)
18. Match the structure with the correct function.

<table>
<thead>
<tr>
<th>A. Brainstem</th>
<th>D. Epithalamus</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Cerebellum</td>
<td>E. Hypothalamus</td>
</tr>
<tr>
<td>C. Cerebral hemispheres</td>
<td>F. Thalamus</td>
</tr>
</tbody>
</table>

- Contains centers that control breathing, heart and blood vessel activity, swallowing, vomiting, digesting
- Helps coordinate large-scale body movements such as walking
- Contains centers for receipt and integration of several types of sensory information
- Most of descending axons cross from one side to CNS to the other; results in right side of brain controlling left side of body
- Medulla, pons, midbrain
- Coordination of movement
- Receives information about position of joints, length of muscles, information from auditory and visual systems, and information from motor pathways; uses information to provide automatic coordination of movements and balance
- Contains the pineal body and choroid plexus
- Major integration center; major input center for sensory information going to cerebrum; main output center for motor information leaving cerebrum
- Produces hormones; contains centers that regulate body temperature, hunger, thirst, fight-or-flight response, sexual responses, pleasure
- Center for higher thought processes; thinking, speech, vision, hearing